On approximate solutions of initial value problems for integro-differential equation with quasilinear differential operator and generalized Volterra operator
نویسندگان
چکیده
منابع مشابه
Analytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations
In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...
متن کاملGeneralized Antiperiodic Boundary Value Problems for the Fractional Differential Equation with p-Laplacian Operator
Fractional differential equations arise in various areas of science and engineering, such as physics, mechanics, chemistry, and engineering. The fractional order models become more realistic and practical than the classical integer models. Due to their applications, fractional differential equations have gained considerable attentions; one can see [1–14] and references therein. Anti-periodic bo...
متن کاملAiry equation with memory involvement via Liouville differential operator
In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...
متن کاملSome identification problems for integro - differential operator equations ∗
We consider, in a Hilbert space H, the convolution integro-differential equation u′′(t)−h∗Au(t) = f(t), 0 ≤ t ≤ T , h∗v(t) = ∫ t 0 h(t−s)v(s) ds, where A is a linear closed densely defined (possibly selfadjoint and/or positive definite) operator in H. Under suitable assumptions on the data we solve the inverse problem consisting of finding the kernel h from the extra data (measured data) of the...
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky
سال: 1969
ISSN: 0528-2195
DOI: 10.21136/cpm.1969.117646